Structural elements necessary for oligomerization, trafficking, and cell sorting function of paraxial protocadherin.

نویسندگان

  • Xuejun Chen
  • Caitlyn Molino
  • Li Liu
  • Barry M Gumbiner
چکیده

Protocadherins have been shown to regulate cell adhesion, cell migration, cell survival, and tissue morphogenesis in the embryo and the central nervous system, but little is known about the mechanism of protocadherin function. We previously showed that Xenopus paraxial protocadherin (PAPC) mediates cell sorting and morphogenesis by down-regulating the adhesion activity of a classical cadherin, C-cadherin. Classical cadherins function by forming lateral dimers that are necessary for their adhesive function. However, it is not known whether oligomerization also plays a role in protocadherin function. We show here that PAPC forms oligomers that are stabilized by disulfide bonds formed between conserved Cys residues in the extracellular domain. Disruption of these disulfide bonds by dithiothreitol or mutation of the conserved cysteines results in defects in oligomerization, post-translational modification, trafficking to the cell surface and cell sorting function of PAPC. Furthermore, none of the residues in the cytoplasmic domain of PAPC is required for its cell sorting activity, whereas both the transmembrane domain and the extracellular domain are necessary. Therefore, protein oligomerization and/or protein interactions via the extracellular and transmembrane domains of PAPC are required for its cell sorting function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity

Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. M...

متن کامل

A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

BACKGROUND Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 ar...

متن کامل

Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation.

Protocadherins have homophilic adhesion properties and mediate selective cell-cell adhesion and cell sorting. Knockdown of paraxial protocadherin (PAPC) function in the Xenopus embryo impairs tissue separation, a process that regulates separation of cells of ectodermal and mesodermal origin during gastrulation. We show that PAPC can modulate the activity of the Rho GTPase and c-jun N-terminal k...

متن کامل

The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation.

Paraxial Protocadherin (PAPC) encodes a transmembrane protein expressed initially in Spemann's organizer and then in paraxial mesoderm. Together with another member of the protocadherin family, Axial Protocadherin (AXPC), it subdivides gastrulating mesoderm into paraxial and axial domains. PAPC has potent homotypic cell adhesion activity in cell dissociation and reaggregation assays. Gain- and ...

متن کامل

Phosphorylation-Dependent Ubiquitination of Paraxial Protocadherin (PAPC) Controls Gastrulation Cell Movements

Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 44  شماره 

صفحات  -

تاریخ انتشار 2007